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 Single pulse (10 nsec) quantitative Filtered Rayleigh 
imaging of temperature fields 

 Pulsed microwave control of flames 
 Greater than 20% Flame speed enhancement 

▪ Coupling efficiency greater than 50% 
▪ < 10% of the flame power 

 Factor of two reduction in equivalence ratio limit. 
 Radar REMPI measurement of NO and radicals in flames.  
 Pulsed microwave coupling to laser pre ionization 
 Distributed ignition 

 Femtosecond Laser Electronic Excitation Tagging (FLEET)  
for velocity and temperature profiles  
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Laser 

•N = the number of dipoles per unit volume 
•V=the illuminated volume of the sample 
•ΔΩ=the collection solid angle 
•η=the detector and optical system efficiency 
•II=the incident laser intensity 
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 Y = scattering length / mean free path 

Cabannes Line Broadening 

Scattering length, Λ 

k1 k2 
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max / 2laserλΛ =

observer Laser 
source 

Rayleigh Scattering Interactions  
leading to line broadenting  

Thermal motion and 
acoustic waves are 
in all directions 
Rayleigh scattering is 
sensitive to motion along 
the bisector of the  angle 
between the source and 
detector 
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 If Y < 1, then in the 
Knudsen Regime – no 
collective effects. The 
Rayleigh line is 
Gaussian in this 
regime –low density, 
high temperature 

 
 If Y > 1, then in the 

hydrodynamic regime 
– collective effects 
dominate  - high 
density , low 
temperature 



 Modeled Rayleigh-Brillouin Line Broadening (Pan S7) 

 Narrow-linewidth molecular iodine filter to block background laser  light. 
Eliminates particle and surface scattering 

 Assuming constant pressure (one atmosphere for flame studies) and constant 
species (nitrogen is a good approximation) the signal coming through the filter 
is only a function of temperature 

 Calibrate using the ratio of the signal from the high temperature to that of air or 
nitrogen at room temperature (often in the same frame) 
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• At high temperature the slopes of the calibration curves are almost identical 
Leading to robust measurements of temperature differences above ~1000K 
• Provides a single pulse (10 nsec) image of the temperature field 



 Research Technologies RD1x1 Hencken Burner 
 With line scattering can obtain Rayleigh signal-to-background > 20:1 
 Normalize flame Rayleigh scattering to that of N2 co-flow 
 Accuracy and precision better than 5% 

H2/Air Hencken Burner Measurements 
with averaged FRS Calibration 
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 Uniform velocity at exit  
 ve< 100cm/s 

 Large L/D ~ 3.8 leads to low strain rates 
 Flame stabilized by aerodynamic strain 

rate 
 Cavity limited optical access 

 ‘Meshed’ windows 
 Narrow laser slots 

MW  
Radiation 

Temperature Controlled 
Cavity Roof/Stagnation surface 

N2 N2 Fuel/Air 

2.3
” 





 CH4/Air laminar stagnation flame speed enhancement 
with 1.3kW cw-microwave radiation 

~25% enhancement seen with 1.3 kW magnetron, ~10-20W absorbed power 

• 2% error in DPIV measurement 
propagates to ~4% error in flame 
speed enhancement percentage 
 

• Peaking at φ=0.75 might be an 
outcome of experimental procedure 
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The OH level Is increased and the OH decay rate away from the flame front is reduced 

off on 

ϕ= 0.76 
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 Uexit ~ 60 cm/s 

 Dexit = 0.6 cm 

 φ = 0.6 - 0.9 

 532 nm, injection seeded Nd:YAG for 
tunable, narrow linewidth 



 95 K increase in post flame temperature 
 Temperature rise is just after flame sheet 

 Implies microwave energy deposition is in flame sheet 
  

PMW=1.3 kW 

PMW=0 W 

Flame Shifted  
Coords 

95 K 
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Pulsed 1 kHz, 5 mj/ pulse = 50 Watts CW – 1.3 kW 

Reduction in average power by a factor of 26 
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 Deposition localized near flame 
front/reaction zone 

 25 mJ, 1 us pulse gives 200 K 
rise 

 50 mJ, 2 us pulse gives 350 K 
rise 

 With 30 Watts average pulsed  
power the flame speed is 
enhanced as much as with a 1.3 
kW continuous microwave 

 Coupling efficiency is ~60%.  

MW Enhancement FS+MW Ignition Plasmas for Combustion 
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High efficiency coupling of pulsed microwaves 
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Laser 

Microwave Echo 

Microwave Beam 

Microwave/laser measurement 
configuration. The focused laser creates a 
small region of ionization and the microwaves 
are scattered from that region into the 
microwave detector.  



Luo et al., Chem Phys. 153, 473 (1991) 
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 1+1 REMPI of NO with 226 nm laser 
 100 GHz probes the plasma. 
 The mixer output is proportional to the 

scattering amplitude, hence electron 
density 

 Linear signal from ppm to ppb 
 Sub-nanosecond temporal resolution 
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NO measured in the post flame product gas and averaged over time 
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Predicted nitric oxide increase a a function 
of  temperature over ϕ = 0.8 equilibrium 



 Good signal linearity with Xe concentration observed at 20 mm 
above the burner surface, where atomic O concentrations are 
expected to approach equilibrium values 

 Xe detection limit in a flame ~130 ppm (1014 – 1015 cm-3) 
 

20 mm 



 Reasonable agreement close to stoichiometric conditions but overshoot 
in the fuel rich and lean regime 

Atomic O concentration is varied by 
changing the equivalence ratio 
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0.9 ms 1.9 ms 2.9 ms 

Laser-MW ignition 

Laser-MW ignition 
with additional MW 
pulses at ms intervals. 
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NO MW DUAL 

‣ 2 laser ionization regions in one standing mode 
maximumSingle 75 mJ, 3 μs MW pulse 

Michael, et al., Journal of Applied Physics 108 (2010) 093308. 

MW Enhancement FS+MW Ignition Plasmas for Combustion 
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Weak shock (M = 1) 

LASER 

LASER 
+ 
50 mJ 
MW 

MW Enhancement FS+MW Ignition Plasmas for Combustion 
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800 nm = 1.55 eV 

Prompt  
Emission 
From  
Molecular  
nitrogen 

Delayed  
emission 

Recombination 
Of atomic nitrogen  



 Each progression 
includes about 10 line 
displacement shots 
due to the long 
lifetime in pure N2 

 Measured centerline 
velocity ~150m/s  
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• The rotational temperature of a gas is closely 
linked to translational temperature. 

• The rotational temperature equilibrates with the 
translational temperature within a few collisions 
– less than a nanosecond in atmospheric 
pressure air 

• Second positive UV emission is used – prompt 
emission 

• By measuring the distribution of rotational 
states, we extract the instantaneous  
temperature profile 
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 Temperature profiles can be measured, since images capture displacement on 
one axis and spectrum on the other. 
 

 Profile measurements based on ratio between systems show good agreement 
with thermocouple measurements.  
 

 Temperatures calculated based on rotational spectra are slightly warmer than 
measured, perhaps due to laser heating of focal region.  
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 Control of atmospheric pressure flames with pulsed 
microwave energy 
 High efficiency coupling (>50%) 
 Small percentage of flame power (~3% to 10%) 
 Flame speed enhancement (>20%) 
 Extension of lean limit (factor of two) 
 Distributed ignition 

 Development of new diagnostics 
 Quantitative Temperature images with Filtered Rayleigh Scattering 
 Measurement of NO and radicals with Radar REMPI 
 Imaging velocity and temperature profiles with FLEET 
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